No, we can't treat carbapenemase and ESBL producers based on MIC

David Livermore

Prof of Medical Microbiology, UEA

Lead on Antibiotic resistance PHE

What I'm going to argue

- In-vitro/in-vivo correlation poorer than we like to think
 - Patients are more variable
 - Susceptibility are less precise
- Detecting mechanisms is
 - A better guide to treatment
 - A safety check on susceptibility testing
 - Potentially faster than susceptibility testing

Typical MICs by β-lactamase type

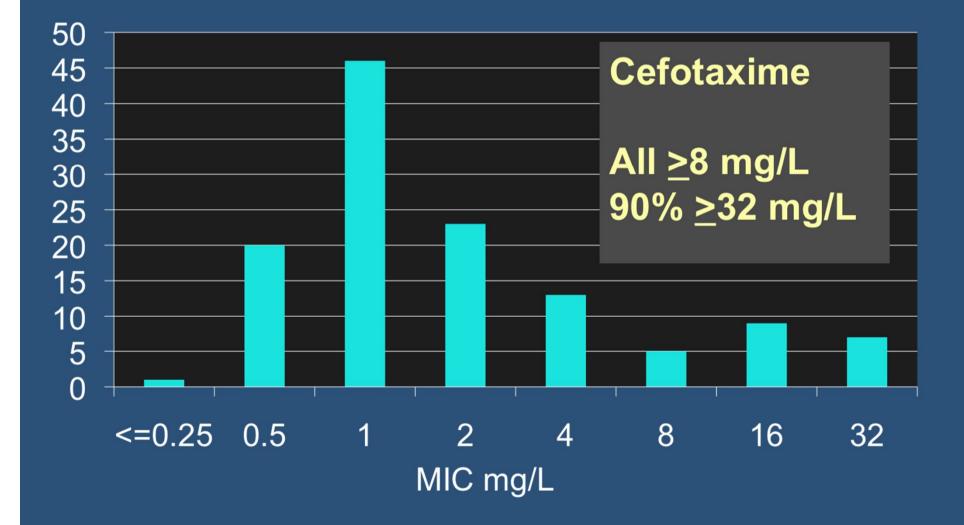
	R-	TEM-1	TEM-12	TEM-10	СТХ-М- 15	СТХ-М- 14
Ceftazidime	0.12	0.12	8	128	32	2
Cefotaxime	0.03	0.03	0.12	1-2	256	128
Ceftriaxone	0.03	0.03	0.12	1-2	256	128

EUCAST bpts	mg/L
Ceftazidime, cefepime	<u><</u> 1, >4
Cefotaxime & Ceftriaxone	<u><</u> 1, >2

EUCAST proposed advice 'report as found; 'strong arguments to seek ESBLs infection control & epidemiological purposes'

What % of ESBL producers do you think are S to >1 cephalosporin on EUCAST criteria?

- 1) <1%
- 2) 1-5%
- 3) 5-10%
- 4) 10-25%
- 5) 25-50%
- 6) >50%
- 7) What's a cephalosporin?
- 8) Cephalosporins are a sort of poison that select for C. diff


BSAC Bacteraemia Surveillance, 2013; 105 ESBL producers, EUCAST criteria

		Cefotaxime		Cefta	Ceftazidime		oime
		S <u><</u> 1	 2	S <1	І 2-4	S <u><</u> 1	І 2-4
CTX-M Gp1	78	0	0	2	14	9	11
CTX-M Other	14 (12=Gp9)	0	0	2	9	1	9
Non-CTX-M	13	6	0	1	5	10	2
Total	105	6	0	5	28	20	22

Overall: 23 S to \geq 1ceph; 49 S or I to \geq 1ceph

E. coli 65; Klebsiella 24; Enterobacter 14; Proteus 2

Ceftazidime MICs Enterobacteria with CTX-M-9/14 ESBLs

Effect of introducing new CLSI breakpoint for ceftazidime, Israel

ESBL producers (by Vitek) found susceptible:

> E. coli, 64% of 203

K. pneumoniae, 8.6% of 85

> *P. mirabilis*, 100% of 21

CTX-M-2 is the prevalent ESBL

Yoram Keness' data in Livermore et al., 2012

Outcome & MIC in bacteraemias with CTX-M-3/-14 *E. coli;* ceftazidime 2g q8h

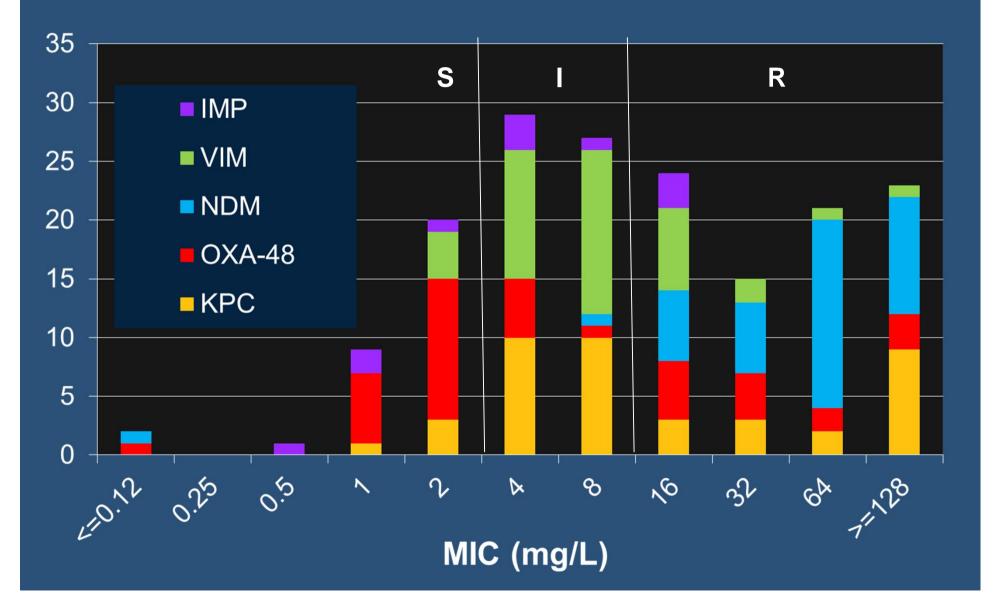
Patient	Source	MIC (mg/L	Outcome
M62	UTI	8	Cure
F49	Peritonitis	1	Responded, but drainage needed
F36	UTI	2	Cure
M45	Biliary infection	2	Cure
M67	?	2	Cure
F76	HAP	8	Cure
F38	UTI	0.5	Cure

Bin et al., DMID 2006; 56: 351

ESBL *E coli* infections treated with ceftazidime: all zones <a>18 mm

Patient	Infection	Ceftazidime MIC (mg/L)	Outcome
F70	Peritonitis	1	Died, Sepsis
F72	UTI	1	Died , Despite switch to imipenem
F69	UTI	0.75	Fail, Resolved on gentamicin
M49	Liver abscess	>16, not CTX-M	Died, Persistent infection
F82	UTI	0.06	Cured
M67	1º bacteraemia	0.5	Cured
F83	UTI	0.25	Cured Initial response to amox- clav

Hong Kong; CTX-M-14; MICs determined subsequently


Ho *et al., Scand JID* 2002; **34:**567 Livermore *et al., JAC* in press

Carbapenemase producers often appear susceptible to carbapenems

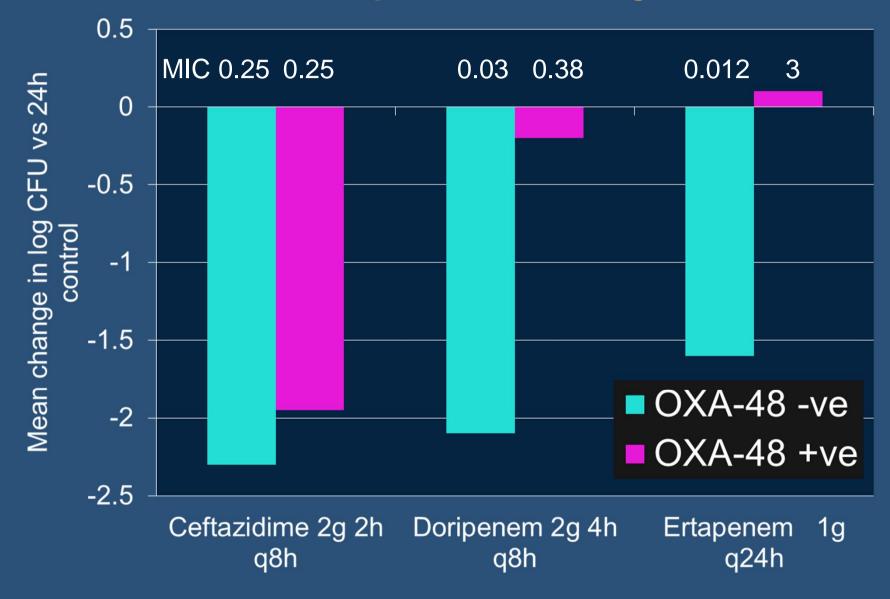
1) Agree

- 2) Disagree
- 3) What's a carbapenemase

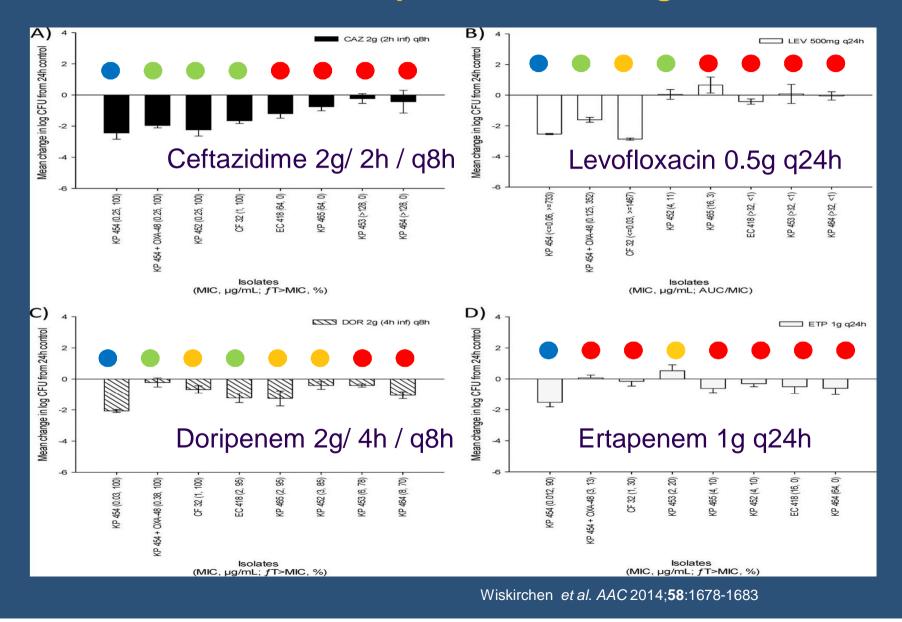
MICs of meropenem for carbapenemaseproducing Enterobacteriaceae (n=174)

VIM-positive *K. pneumoniae*, Greece, 2001 onwards

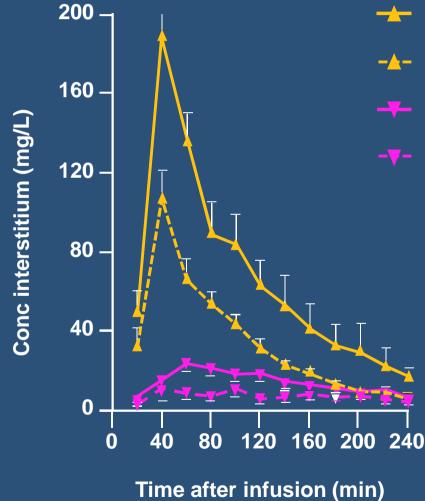
- Mostly VIM-2, integron-borne on IncN plasmids
- In 25 of 40 surveillance hospitals
- Much resistance low level
 - If MIC >4 mg/L, 54% bacteraemia mortality,
 - > 13% if MIC < 4 mg/L vs. 10.7% among controls


Vatopoulos Eurosurv 2008, 13 pii 8023

Carbapenem R_x in infections with KPC *Klebsiella*


Patient	Site	MIC imipenem		Days	Outcome
		Vitek	Etest	imipenem	
M76	Respiratory	2	0.25	7-mero	Failed
M82	Blood	4	2	14	Cure
M92	Respiratory	4	2	3	Cure
F64	Respiratory	4	2	12	Failed
F69	Respiratory	4	8	6	Failed
F46	Blood	4	8	7	Cure
M77	Respiratory	4	<u>></u> 32	7	Failed
F61	UTI	2	<u>></u> 32	7	Cure
M52	UTI	4	16	14	Failed
F60	Blood	<u>></u> 16	8	10-mero	Failed
M60	Respiratory	<u>></u> 16	8	7-mero	Cure

Weisenberg et al., DMID 2009;64:233


Human-simulated regimens vs. OXA-48+/- K. pneumoniae 454 in immunocompetent mouse thigh infection

Human-simulated regimens vs. OXA-48 Enterobacteriaceae isolates in immunocompetent murine thigh infection

Sepsis & antibiotic pK

Muscle of healthy volunteers
 Adipose tissue of healthy volunteers
 Muscle of septic patients

Adipose tissue of septic patients

Piperacillin 4 g in 10 min
APACHE II score (36-66)

Joukhadar et al. Crit Care Med 2001;29:385

How accurate are your clinical lab's MICs

- 1) We are accredited lab and run controls on all MICs
- 2) We only accept results if S control is at exact reference value
- 3) We only accept if S & R controls are at exact reference values
- 4) The textbooks say MICs are OK +/- 1 doubling dilution
- 5) We have a Vitek / Phoenix. We trust it
- 6) Honestly, our MICs are a bit 'iffy'
- 7) We do disc tests, not MICs
- 8) I don't know, ask the lab tech

Susceptibilities of 5 VIM +ve Klebsiella by 5 methods

	Broth	Etest	Vitek	Phoe- nix	Micro- scan
Imipenem	2-4	2-8	8- <u>></u> 16	<u>></u> 16	<u><</u> 4
Meropenem	1-4	1-4	1-2	<u>></u> 16	<u><</u> 4

Authors overlap with those who said patients respond if carbapenem MIC <4 mg/L.....

S <u><</u>2 mg/L; R >8 mg/L

Giakkoupi et al. JCM 2005;43:494

Carbapenem R_x in infections with KPC *Klebsiella*

Patient	Site	MIC im	ipenem	Days	Outcome
		Vitek	Etest	imipenem	
M76	Respiratory	2	0.25	7-mero	Failed
M82	Blood	4	2	14	Cure
M92	Respiratory	4	2	3	Cure
F64	Respiratory	4	2	12	Failed
F69	Respiratory	4	8	6	Failed
F46	Blood	4	8	7	Cure
M77	Respiratory	4	<u>></u> 32	7	Failed
F61	UTI	2	<u>></u> 32	7	Cure
M52	UTI	4	16	14	Failed
F60	Blood	<u>></u> 16	8	10-mero	Failed
M60	Respiratory	<u>></u> 16	8	7-mero	Cure

Weisenberg et al., DMID 2009;64:233

E. coli NCTC13352. K-12 derivative with TEM-10, a ceftazidimase

	MIC mg/L
Ceftazidime	>128
Cefotaxime	1-2
Ceftriaxone	1-2
Cefepime	2-4

4 labs each did disc tests 10 times...

NCTC13352: ceftazidime 30 μg discs: 10 tests/lab

	Mean	SD	S		R
	zone (mm)	(mm)	<u>></u> 30	26-29	<u><</u> 25
Lab 1	8.1	0.57	0	0	10
Lab 2	6.8	1.75	0	0	10
Lab 3	6.0	0	0	0	10
Lab 4	6.0	0	0	0	10

Data courtesy Jenny Andrews, Birmingham

NCTC13352: cefotaxime 30 μg discs: 10 tests/lab

	Mean	SD	S		R
	zone (mm)	(mm)	<u>></u> 30	24-29	<u><</u> 23
Lab 1	28.7	0.82	1	9	0
Lab 2	29.4	0.97	6	4	0
Lab 3	25.9	1.29	0	10	0
Lab 4	31.3	1.06	10	0	0

Data courtesy Jenny Andrews, Birmingham

NCTC13352: cefepime 30 μg discs: 10 tests/lab

	Mean	SD	S		R
	zone (mm)	(mm)	<u>></u> 32	27-31	<u><</u> 26
Lab 1	26.4	0.52	0	4	6
Lab 2	28.1	0.74	0	10	0
Lab 3	23.0	1.55	0	0	10
Lab 4	29.1	1.00	0	10	0

Data courtesy Jenny Andrews, Birmingham

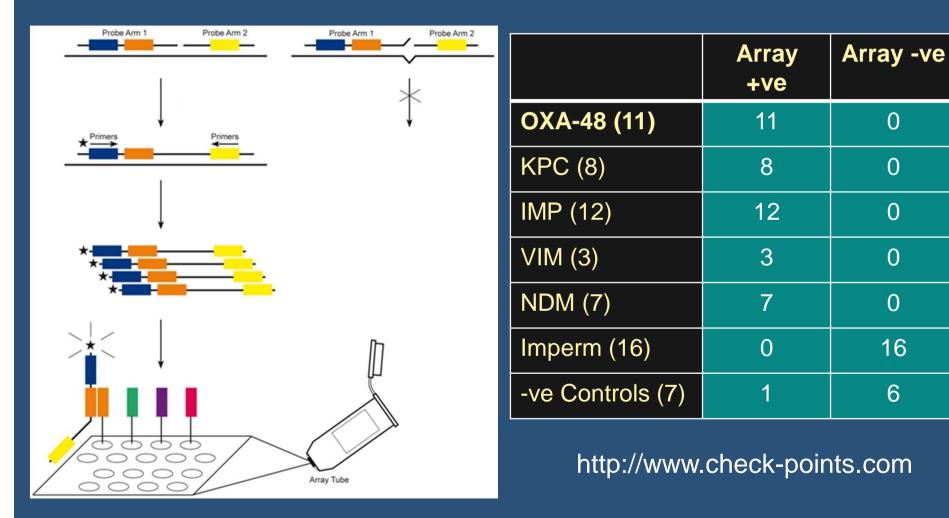
Which is more useful?

1) 48 h post-specimen

'It's a *Kleb. pneumoniae*. Very resistant. We've found an MIC of 2 mg/L for meropenem, though. It might be okay at high dose. Or prolonged infusion. Otherwise there's colistin.'

'Yes, of course; our lab is fully accredited!'

2) 4 h post-specimen


'There is something with a KPC gene in this sputum from Mr X with the ventilator pneumonia'

'It's likely to be resistant to everything except colistin'

Rapid molecular detection of resistance

- PCR or gene chip technology on overnight culture... or directly from specimen
- Identify gene and predict resistance
 - But not MIC / direct measure of susceptibility
- Would be available if all ESBLs were *bla*_{CTX-M} variants
 - Has been slow for ESBLs because many are sequence variants of bla_{TEM/SHV}
- Feasible for carbapenemase genes

Checkpoints array for carbapenemases, ESBLs & AmpC

Zhang et al. ECCMID 2011

Useful tests that give a result at 24h..... 24h ahead of susceptibility data

- Chromogenic selective media to detect ESBL or carbapenemase producers
- Chromogenic cephalosporin HMRZ-86 (Cica β -Test)
- > Use with inhibitors to predict β -lactamase type
- Acidimetric (CarbaNP) / Iodometric test to detect carbapenemase activity
- MALDI-ToF based carbapenemase detection
- BUT THEY DON'T GIVE AN MIC

Wilkinson *et al., JCM* 2012;**50:**Livermore *et al., JAC* 2007; **60:**Dortet *et al. JMM* 2014;**63:**Hrabák *Methods Mol Biol* 2015;**1237:**91-6

ESBL Report by mechanism

- Ceph MICs of 1-4 mg/L don't reliably predict cure
- Routine susceptibility testing not so precise as we suppose
- Finding a mechanism is faster than measuring an MIC
 - It is going to become a lot faster
- Thinking mechanisms enables the unusual to be spotted

Carbapenems may still be useful in combination vs carbapenemase producers

- 38 articles, 105 cases; mostly *K. pneumoniae* (89%) blood (52%) or RTI (30%).
- 47% monotherapy 53% combinations: more failure in monotherapy 49% vs 25%; p= 0.01)
 - True for polymyxin or carbapenem based combination
- Failure rates insignificantly different for 3 main combinations:
 - Polymyxin + carbapenem (30%)
 - Polymyxin + tigecycline (29%)
 - Polymyxin + aminoglycoside (25%)

Lee & Burgess AAC 2012 epub